Abstract

The potential effects of engineered metal oxide nanoparticles (MONPs) on bacterial nitrogen fixation are of great concern. Herein, the impact and mechanism of the increasing-used MONPs, including TiO2, Al2O3, and ZnO nanoparticles (TiO2NP, Al2O3NP, and ZnONP, respectively), on nitrogenase activity was studied at the concentrations ranging from 0 to 10 mg L−1 using associative rhizosphere nitrogen-fixing bacteria Pseudomonas stutzeri A1501. Nitrogen fixation capacity was inhibited by MONPs in an increasing degree of TiO2NP < Al2O3NP < ZnONP. Realtime qPCR analysis showed that the expressions of nitrogenase synthesis-related genes, including nifA and nifH, were inhibited significantly when MONPs were added. MONPs could cause the explosion of intracellular ROS, and ROS not only changed the permeability of the membrane but also inhibited the expression of nifA and biofilm formation on the root surface. The repressed nifA gene could inhibit transcriptional activation of nif-specific genes, and ROS reduced the biofilm formation on the root surface which had a negative effect on resisting environmental stress. This study demonstrated that MONPs, including TiO2NP, Al2O3NP, and ZnONP, inhibited bacterial biofilm formation and nitrogen fixation in the rice rhizosphere, which might have a negative effect on the nitrogen cycle in bacteria-rice system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.