Abstract

Nanoparticles (NPs) have been designed for the treatment of tumors increasingly. However, the drawbacks of single-size NPs are still worth noting, as their circulation and metabolism in the blood are negatively correlated with their accumulation at the tumor site. If the size of single-size NPs is too small, it will be quickly cleared in the blood circulation, while, the size is too large, the distribution of NPs in the tumor site will be reduced, and the widespread distribution of NPs throughout the body will cause systemic toxicity. Therefore, a class of variable-size NPs with metal organic frameworks (MOFs) as the main carrier, and size conversion in compliance with the characteristics of the tumor microenvironment (TME), was designed. MOF-based variable-size NPs can simultaneously extend the time of blood circulation and metabolism, then enhance the targeting ability of the tumor site. In this review, MOF NPs are categorized and exemplified from a new perspective of NP size variation; the advantages, mechanisms, and significance of MOF-based variable-size NPs were summarized, and the potential and challenges in delivering anti-tumor drugs and multimodal combination therapy were discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call