Abstract
Metal-doping is a common strategy for establishing active sites on photocatalyst, but appropriately exposing them for maximized atomic utilization remains a great challenge in photocatalytic research. Herein, we propose a metal organic framework (MOF)-assisted approach to synthesis copper-modified titania (Cu-TiO2/Cu) photocatalyst with homogenously distributed and highly accessible active sites in its matrix. Significantly, an MOF precursor, namely NH2-MIL-125, with co-chelation of titania (Ti) and copper (Cu) was subjected to mild calcination, subsequently results in Cu-modified TiO2 with highly accessible channels to its inner surface. These channels provide not only a large reactive surface (>400 m2 g-1); they also enable facile modifying route for the pre-deposited Cu in prior to photoreaction. Specifically, NH3 treatment was applied to partially reduce deposited Cu ions (Cu+ and Cu2+) into Cu nanoparticles, where their interplays realize improved optical properties and charge separation during photoreactions. Furthermore, the NH3-induced Cu nanoparticles could also serve as the adsorptive site for H+, thereby enabling 5629 μmol h-1 g-1 H2 generation over the optimum photocatalyst of Cu20/TiO2/Cu500. Such performance is associated to 35.44 and 1.71-fold improvements compared to pure TiO2 (Cu0/TiO2) and untreated Cu-ion modified TiO2 (Cu20/TiO2), respectively. This work offers a new synthetic strategy for obtaining photocatalyst with evenly distributed and highly accessible active sites, thus improving the commensurability of photocatalytic H2 generation from the industrial perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.