Abstract
Concerns about energy crisis and CO2 emission have motivated the development of microbial electrosynthesis (MES); recent studies have showed the potential of novel slurry-electrode MES. In this study, the effect of nonprecious metal nanoparticles (NPs) on the performance of slurry-electrode MES was systematically evaluated in terms of chemical production, physicochemical properties, electrochemical characterization, and microbial community. Ni and Cu NPs increased the lag period from 6 to 15 days for acetate production, while Mo NPs showed no apparent effect. However, these metal NPs slightly affected the final total acetate production (ca. 10 g L-1), Faradic efficiency (ca. 50%), net water flux across the anion exchange membrane (ca. 6 mL d-1), or electrochemical characterization of catholyte. BRH-c20a was enriched as the dominated microbe (>48%), and its relative abundance was largely affected by the addition of metal NPs. This study demonstrates that metal NPs affect the performance of biocathodes, mainly by shaping the microbial community.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have