Abstract

Viewing angle characteristics of displays and performance of electro-optic devices are often compromised by the quality of dichroic thin-film polarizers, while dichroic optical filters usually lack tunability and cannot work beyond the visible part of optical spectrum. We demonstrate that molecular-colloidal organic-inorganic composites formed by liquid crystals and relatively dilute dispersions of orientationally ordered anisotropic gold nanoparticles, such as rods and platelets, can be used in engineering of switchable plasmonic polarizers and color filters. The use of metal nanoparticles instead of dichroic dyes allows for obtaining desired polarizing or scattering and absorption properties not only within the visible but also in the infrared parts of an optical spectrum. We explore spontaneous surface-anchoring-mediated alignment of surface-functionalized anisotropic gold nanoparticles and its control by low-voltage electric fields, elastic colloidal interactions and self-assembly, as well as the uses of these effects in defining tunable properties of the ensuing organic-inorganic nanostructured composites. Electrically tunable interaction of the composites may allow for engineering of practical electro-optic devices, such as a new breed of color filters and plasmonic polarizers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call