Abstract
Ensuring the thermomechanical reliability of various interfaces in thermoelectric (TE) devices during manufacture and operation is challenging, especially for those incorporating TE materials with small coefficients of thermal expansion (CTEs). In this paper, we describe our recent progress in the development of metal-matrix nanocomposites with tailorable CTEs, for use as electrodes or as interfacial bonding layers for creating segmented TE elements. The composites incorporate ceramic nanoscale fillers with isotropic negative thermal expansion (NTE) to effectively offset the high CTE of the metal phase. The NTE fillers, synthesized using a sol–gel route, were mixed with metal powders and hot pressed to yield nanocomposites having CTE values decreasing approximately linearly with filler volume fraction. Composites with 54/46 v/v Ag/zirconium tungstate (ZrW2O8) achieved average CTE of 7.2 ppm/K, with electrical and thermal conductivities approximately 50% of that of Ag nanopowders hot pressed under identical conditions. X-ray diffraction (XRD) analyses suggest that the composites are thermally stable at temperatures as high as 920 K. This research provides a foundation upon which to investigate alternative electrode and interface materials with tailored CTEs for achieving improved thermomechanical reliability of TE modules and other thermal and electronic devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have