Abstract

The fast-growing body of experimental data on metalloenzymes and organometallic compounds is fostering the exploitation of metal–ligand interactions for the design of new drugs. Atomistic understanding of the metal–ligand interactions will help us identify potent metalloenzyme inhibitors and metallodrugs. Static docking calculations have proved effective in identifying hit compounds that target metalloproteins. However, the flexibility, dynamics and electronic structure of metal-centred complexes pose difficult challenges for shaping metal–ligand interactions in structure-based drug design. In this respect, once-prohibitive quantum mechanics-based strategies and extensive molecular simulations are rapidly becoming practical approaches for fast-paced drug discovery. These methods account for ligand exchange and structural flexibility at metal-centred complexes and provide good estimates of the thermodynamics and kinetics of metal-aided drug binding. This Perspective examines the successes, limitations and new avenues for modelling metalloenzyme inhibitors and metallodrugs to further explore and expand the unconventional chemical space of these distinctive drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.