Abstract

In organic thin-film transistors (OTFTs), organic electron-transport materials (n-type semiconductors) are well behind the advances in development of hole-transport materials (p-type semiconductors). Currently, one class of organic n-type semiconductor materials that is widely utilized is N,N'-dialkyl-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-R) derivatives with high electron affinities (EAs), such as N,N'-dioctyl-3,4,9,10-perylenetetracarboxylic diimide with a reported EA as high as 4.4 eV. The PTCDI-R derivatives have been manipulated by adding substituents on the perylene moiety or at the amine position to afford more stable compounds and higher EAs. On the basis of these materials, we have developed metal-containing perylenediimide analogues, placing a salpen ligand for metal ion chelation between two n-isobutylnaphthalimides. We demonstrate here that the electronic properties of this class of materials can be systematically tuned in a divergent manner by simply changing the metal center. The synthesis, characterization, electrochemistry, and band-gap analysis are discussed herein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.