Abstract
Boron-doped amorphous graphite-like carbon (GLC) films have been prepared with different boron concentrations. Electrical transport measurements in the temperature range 1.3–300 K on the films shows a doping-induced metal–insulator (MI) transition. On the metallic side of the transition, the experimental data are interpreted in terms of weak localization and the effect of electron–electron interactions. Data on the insulator side of transition are analyzed in terms of hopping conduction. Critical behaviour is observed near the transition, with the resistivity obeying a power-law temperature dependence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.