Abstract

Boron-doped amorphous carbon (a-C:B) films were successfully synthesized via a bias-assisted pyrolysis-chemical vapor deposition (CVD). The effect of substrate bias on the thickness, surface morphology, electrical properties of a-C:B film were investigated. The AFM measurements and conductivity result show the surface roughness and resistivity of a-C:B films decreases with increasing substrate bias from 0 to −20 V. The fabricated films were evaluated for use in photovoltaic solar cells. The fabricated solar cell with the configuration of Au/p-C:B/n-Si/Au achieved conversion efficiency (η) of 1.431% at applied bias voltage of −20 V. This result showed the successful interstitial doping of boron in the amorphous carbon films deposited by this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.