Abstract

An aminonaphthoquinone ligand, L, and its metal complexes of general formula [MLCl2] {M = Co(II), Ni(II), Cu(II) and Zn(II)} have been synthesized and characterized by analytical and spectral techniques. Tetrahedral geometry has been assigned to Ni(II) and Zn(II) complexes and square planar geometry to Co(II) and Cu(II) complexes on the basis of electronic spectral and magnetic susceptibility data. The binding of complexes with bovine serum albumin (BSA) is relatively stronger than that of free ligand and alters the conformation of the protein molecule. Interaction of these complexes with CT-DNA has been investigated using UV-Vis and fluorescence quenching experiments, which show that the complexes bind strongly to DNA through intercalative mode of binding (Kapp 105 M−1). Molecular docking studies reiterate the mode of binding of these compounds with DNA, proposed by spectral studies. The ligand and its complexes cleave plasmid DNA pUC18 to nicked (Form II) and linear (Form III) forms in the presence of H2O2 oxidant. The in vitro cytotoxicity screening shows that Cu(II) complex is more potent against MCF-7 cells and Zn(II) complex exhibits marked cytotoxicity against A-549 cells equal to that of cisplatin. Cell imaging studies suggested apoptosis mode of cell death in these two chosen cell lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call