Abstract
Purpose: To carry out the synthesis of various hybrids of 1,2,4-triazole in search of potential therapeutic enzyme inhibitory agents, and carry out docking and bovine serum albumin (BSA) binding studies on docking and bovine serum albumin (BSA) binding studies on the hybrids.
 Methods: The target compounds were synthesized by following a multistep protocol. Compound 1 was synthesized from 4-methoxybenzenesulfonyl chloride (a) and ethyl isonipecotate (b). Compound 1 was refluxed with hydrazine to synthesize compound 2, which was converted to compound 3 through two consecutive steps. Compound 4 and different amines (5a-5i), were utilized to synthesize an array of electrophiles (6a-6i). A series of 1,2,4-triazole hybrids (7a-7i) were synthesized at room temperature by stirring together 3 and 6a-6i. The final structures of 7a-7i were elucidated through 1H-NMR, 13C-NMR and EI-MS spectroscopy. The BSA binding studies were performed by fluorometric titration. Furthermore, antioxidant and enzyme inhibition activities were determined colorimetrically.
 Results: Compound 7d was the most active antioxidant agent, compared to butylated hydroxyanisole (BHA), while compounds 7d, 7e, 7f, 7g and 7i proved to be potent urease inhibitors with half-maximal inhibitory concentration (IC50) values of 19.5 ± 0.12, 21.1 ± 0.68, 18.2 ± 0.78, 19.9 ± 0.77 and 17.9 ± 0.10 µM, respectively, compared to thiourea with an IC50 of 24.3 ± 0.24 µM. Compounds 7a, 7b, 7d, and 7e exhibited high butyrylcholinesterase inhibition potential, compared to eserine.
 Conclusion: The synthesized compounds require studies further as potential therapeutic enzyme inhibitory agents in view of their urease inhibition as well as antioxidant activity.
Highlights
Nitrogen-based heterocyclic compounds are pharmacologically active agents [1]
Hybrids bearing 1,2,4-triazole and piperidine were synthesized according to Scheme 1
The five protons of the phenyl ring attached to triazole were based on two multiplets at 7.567.55 and 7.26-7.21 ppm
Summary
Nitrogen-based heterocyclic compounds are pharmacologically active agents [1]. These moieties include piperidine [2,3,4,5] and 1,2,4triazole [4,6,7,8,9], which show different biological activities. On the basis of their biological potential, we designed the current study to EXPERIMENTAL. General for another 3 h to obtain the title compound. Compound 3 was precipitated at pH 4 - 5 by the addition of dil. The precipitate was filtered out, washed with distilled water and dried at room temperature
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.