Abstract
As hydrogen generation technologies using renewable energy sources are being developed, considerable attention is paid to storage and transportation of hydrogen gas. Metal hydride alloys are considered as promising materials because they are viewed as an attractive alternative to conventional hydrogen storage cylinders and mechanical hydrogen compressors. Compared to storing in a classic gas cylinder, which requires compression of hydrogen at high pressures, metal hydride alloys can store the same amount of hydrogen at nearly room pressure. However, this hydrogen absorption necessitates an effective way to reject the heat released from the exothermic hydriding reaction. In this paper, fin structures are employed to enhance the heat transfer of metal hydride alloys in a cylindrical reactor. Numerical simulations are performed based on a multiple-physics modeling to analyze the transient heat transfer during the hydrogen absorption process. The objective is to minimize the time elapsed for the process and to reduce the hotspot temperature by determining the number and shape of rectangular fins while the total volume of fins used are fixed. The simulation results show that the more fins are applied the better heat transfer is achieved and that there exists an optimal length of the fins.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have