Abstract

A large active specific surface area is a very efficient way to improve charge/discharge rate capabilities of metal hydride electrodes. This can be promoted by washing oxidized, pre-hydrided AB5 alloy particles in a hot KOH solution. This leads to magnetization of the alloy powder, making it possible to lift the powder with a simple permanent magnet, indicating that nickel liberated in the surface layer is essential for the improved kinetics.The overpotential of each step in the discharge process is analysed in detail using both half cells and sealed cells. The electrode polarisation depends inversely on the current density per active area. Untreated and treated alloy powders have similar current densities per active area, but treated powder exhibits superior kinetics due to its larger surface area. A NiMH cell with a surface-treated alloy has very good rate capability, only limited by the kinetics of the Ni electrode.At low overpotential, the electrochemical reaction gives the main contribution to the electrode polarisation. If the discharge current is increased to give an overpotential of more than 0.1 V, concentration polarisation will become important and a limiting factor at high current densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call