Abstract

Developing efficient, stable and sustainable photocatalysts for water splitting is one of the most significant methods for generating hydrogen. Conjugated microporous polymers, as a new type of organic semiconductor photocatalyst, have adjustable bandgaps and high specific surface areas, and can be synthesized using diverse methods. In this work, we report the design and synthesis of a series of pyridyl conjugated microporous polymers (PCMPs) utilizing polycondensation of aromatic aldehydes and aromatic ketones in the presence of ammonium acetate. PCMPs with different chemical structures were synthesized via adjusting monomers with different geometries and contents of nitrogen element, which could adjust the bandgap and photocatalytic performance. Photocatalytic hydrogen evolution rate (HER) up to 1198.9 μmol·h−1·g−1 was achieved on the optimized polymer with a specific surface area of 312 m2·g−1 under UV-Vis light irradiation (λ>320 nm). This metal-free synthetic method provides a new avenue to preparing an efficient photocatalyst for hydrogen evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.