Abstract

In this paper, we present our recent experimental results on buoyancy-induced convection in aluminum metal foams of different pore densities [corresponding to 5, 10, 20, and 40 pores per in. (PPI)] and porosities (0.89–0.96). The results show that compared to a heated surface, the heat transfer coefficients in these heat sinks are five to six times higher. However, when compared to commercially available heat sinks of similar dimensions, the enhancement is found to be marginal. The experimental results also show that for a given pore size, the heat transfer rate increases with porosity, suggesting the dominant role played by conduction in enhancing heat transfer. On the other hand, if the porosity is held constant, the heat transfer rate is found to be lower at higher pore densities. This can be attributed to the higher permeability with the larger pores, which allows higher entrainment of air through the porous medium. New empirical correlations are proposed for the estimation of Nusselt number in terms of Rayleigh and Darcy numbers. We also report our results on novel finned metal foam heat sinks in natural convection. Experiments were conducted on aluminum foams of 90% porosity with 5 and 20 PPI with one, two, and four aluminum fins inserted in the foam. All of these heat sinks were fabricated in-house. The results show that the finned metal foam heat sinks are superior in thermal performance compared to the normal metal foam and conventional finned heat sinks. The heat transfer increases with an increase in the number of fins. However, the relative enhancement is found to decrease with each additional fin. The indication is that there exists an optimum number of fins beyond which the enhancement in heat transfer, due to increased surface area, is offset by the retarding effect of overlapping thermal boundary layers. Similar to normal metal foams, the 5 PPI samples are found to give higher values of h compared to the 20 PPI samples due to higher permeability of the porous medium. Future work is planned to arrive at the optimal heat sink configuration for even larger enhancement in heat transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.