Abstract
The equilibration and bioavailability of metals in laboratory-contaminated sediments have been investigated in order to provide better guidance on acceptable procedures for spiking sediments with metals for use in the development of whole-sediment toxicity tests. The equilibration rates of Cd, Cu, Ni and Zn spiked into three estuarine surface sediments with varying properties were investigated. Changes to sediment pH, redox potential, porewater and acid-soluble metals, acid-volatile sulfide and bacterial activity during equilibration, effects of temperature and disturbances following equilibration are reported. The addition of metals to sediments caused major decreases in pH and increases in redox potential as metals displaced iron(II) into the porewaters and added metals and iron (following oxidation) were hydrolyzed. The rates of equilibration of metals in porewaters varied considerably and were dependent on sediment and metal properties. For the oxic/sub-oxic sediments studied, metal-spikes of Cd, Cu, Ni and Zn appeared near equilibrium after 25–45, 10–15, 30–70 and 20–40 days, respectively. Acid-soluble metal concentrations decreased during the equilibration period indicating that the metals become more strongly associated with the sediments with time (less bioavailable). Bacterial activity was greatest in the sediment equilibrated at pH 7 and decreased following the addition of metals. During the equilibration period, bacterial activity increased in sediments equilibrated at pH 6, remained low in sediments at pH 8 and varied erratically in sediments at pH 7. Spiked sediments were shown to equilibrate more slowly at lower temperatures resulting in high porewater metal concentrations. Disturbances to equilibrated sediments because of sample manipulation caused significant iron(II) oxidation and losses of metals from porewaters. The importance of documenting spiking and equilibration procedures and carefully measuring and reporting sediment parameters is highlighted so that contaminant bioavailability and exposure pathways can be interpreted and organism sensitivity accurately determined. Recommendations are given for the preparation of metal-spiked sediments for toxicity testing purposes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have