Abstract

Single-atom catalysts (SACs), as a thriving subfield of catalysis, have progressed tremendously. However, the contradiction between the isolated dispersion feature of metal sites and the high mass-specific activity of the catalyst inhibits the advances of the SACs. Herein, the Pt atoms are confined at the metallic Co phase edge in two-dimensional Co/Co(OH)2 hierarchy structure (PtSA-Co@Co-Co(OH)2) by the defect inducted order electrodeposition strategy. Both integrations of in-situ/ex-situ experimental characterizations and theoretical calculation reveal that such metal edge confined Pt atoms possess an enlarged atom exposure ratio, high stability, and the like-metal electronic state contributed by metal Co 3d, which enables the Pt atoms with more suitable affinity to simultaneously bind the multiple H atoms for durable H*-H2 conversion and H2 evolution. Moreover, the metallic PtSA-Co collaborated Co/Co(OH)2 interfaces demonstrate a strong H2O dissociation capacity by the preference adsorption of H* on metallic PtSA-Co and OH*on Co/Co(OH)2 interfaces. Combining a further enhancement of constructing the catalysts on an Ag nanowire network to form a seamlessly conductive nanostructure, the PtSA-Co@Co-Co(OH)2 achieves a high mass activity with 5.92 A mg−1 at the overpotential of 100 mV in alkaline condition, 37 times to that of the benchmark Pt/C catalyst and significantly outperforming the reported catalysts. While our work has focused on the hydrogen evolution reaction, this class of metal edge collaborated single-atom catalysts may be conducive to unlock the low mass-specific activity of atomically dispersed catalysts for various processes, such as oxygen evolution reactions (OER), CO2 reduction, and biomass conversion, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.