Abstract
The practical use of polymers of intrinsic microporosity (PIMs) in CO2 separation is often hindered by their moderate selectivity, performance instability over time, and pressure constraints. To address these limitations, a straightforward approach is presented to enhance the CO2 separation capability of PIM-1 by incorporating metal ions into uniformly hydrolyzed PIM-1 (cPIM). This dual linking strategy, achieved via ionic and coordination bonding of metal ions with the polymeric side chains including ─COOH and ─CONH2, restructures the polymer, disrupting hydrogen bonds between cPIM chains and creating active sites for CO2 via π-complexation. This modification enhances gas permeability while maintaining high selectivity. The optimized zinc-coordinated membrane achieves an impressive CO2 permeability of ≈2,500 Barrer with CO2/N2 and CO2/CH4 selectivities of 27.1 and 23, respectively, outperforming pristine cPIM (700 Barrer; CO2/N2=27; CO2/CH4=19). Notably, this performance surpasses the 2008 Robeson upper-bound limits for both gas pairs. Additionally, the metal-coordinated membranes exhibit remarkable long-term stability, resisting aging effects for up to 20 days and maintaining anti-plasticization properties at pressures up to 20 bar. These dual-crosslinked membranes demonstrate promising potential for mixed gas separation, indicating their suitability for real-world industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.