Abstract

This review provides a new perception on the role of the state of-the-art polymers of intrinsic micro porosity (PIMs) in membrane-based gas separations performance including H2/CH4, H2/N2, CO2/CH4, H2S/CH4, O2/N2, and C2H4/C2H6 applications. Polymers of intrinsic micro porosity are novel amorphous microporous materials that have rigid backbone contorted macromolecular structure with high surface area and many other significant properties attracted the attention of researchers. In contrast to other types of porous organic polymers, PIMs are not included in the class of cross-linked covalent bonds thus they could be dissolved easily in organic solvents and transformed into robust films, fibers or coatings. Polymers of intrinsic micro porosity are considered as more effective among the inherently permeable membrane materials, alongwith their higher separation permeabilities and moderate selectivity that is the best fit into the Robeson upper bond model. This review brings a general overview of the preparation, separation mechanism and gas separation performances of novel polymers of intrinsic micro porosity materials that have been made in the last 16 yr along with their permeability and selectivity on the pure-gas upper bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.