Abstract

<p class="p1">Segmented ring transducers are widely used for low frequency, broadband, deep submergence applications. These transducers can be made out of piezoceramic wedges or slabs and metallic wedges. Higher diameter, low frequency transducers are generally made out of piezoceramic slabs and metal wedges due to ease of manufacture and low cost. In this paper, metal ceramic segmented ring transducers are modelled using ATILA, a finite element software for the design of underwater transducers. Transducer variants were modelled with different wedge and piezoceramic materials. Transducers modelled were manufactured, assembled and tested. Various stages of manufacture like piezoceramic stacking, transducer assembly, pre-stressing with fibre winding, and encapsulation are explained. Acoustic performances of the transducers manufactured were measured in an open tank and inside a pressurised vessel from 10 bar to 70 bar. Performance parameters like resonance frequency, transmitting voltage response and directivity were measured. Results indicate that the transducer has usable bandwidth of about two octaves and stable response. One of the transducers was also tested in a high pressure test facility at 600 bar to check its pressure withstanding capability.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call