Abstract

Characterizing the surfaces of colloidal semiconductor nanocrystals (NCs) remains a key challenge for understanding and controlling their physical properties and chemical behavior. For this reason, the development of new methods to study NC surfaces is of great interest. In this paper, we report the use of (Me3Si)2Fe(CO)4 and Et3SiCo(CO)4 as reagents for functionalizing CdSe NC surfaces with organometallic metal tetracarbonyl fragments. This method avoids NC surface reduction and can achieve high metal carbonyl surface densities. Surface reduction or oxidation, as well as changes to the surface stoichiometry, was shown to shift the metal carbonyl CO stretching frequencies, making these surface-bound metal carbonyl fragments useful spectroscopic reporters of NC surface chemistry. Normal coordinate analysis was used on the metal carbonyl CO stretching vibrations to study the electronic influence of the CdSe NCs on the transition-metal center of the metal carbonyl fragments. These studies demonstrate the utility of organometallic spectroscopic reporters in studying the surface chemistry of NCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.