Abstract

The calcium-dependent mAb, M1 (also called anti-Flag or 4E11) was studied using a newly developed metal-sensitive enzyme-linked immunosorbent assay (ELISA). This antibody, specific for a calcium complex of the peptide antigen, Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys, has found widespread use as a mild purification reagent for Flag-epitope tagged recombinant proteins. Although M1 affinity columns release monovalent Flagged proteins in the absence of calcium, the antibody retains substantial affinity for the Flag sequence even in metal-free conditions, so that it has been impossible to use it to develop a metal-sensitive ELISA assay. This is due to the ability of the antibody to remain bound to polyvalent surface-coated antigen, for instance, when Flagged proteins are bound to ELISA plates or blotting filters. The resultant antigen polyvalence raises the avidity of the Flag antibody to a point where the reaction is essentially calcium-independent. However, when the antibody itself was made monovalent, by proteolytic cleavage to the Fab, this situation was reversed and the ELISA reaction became calcium-dependent. This new metal-dependent ELISA assay was used to explore the metal requirements of the antibody in detail. Among divalent metals, binding tapered off with increasing radius above that of calcium, or with decreasing radius below that of calcium. Several smaller metals, such as nickel, acted as inhibitors of the binding reaction. Substantial binding was demonstrated for heavy metals such as cadmium, lanthanum and samarium. Because it is of interest to use this antibody for the co-crystallization of recombinant Flag-fusion proteins, the ability to bind heavy metals was a significant finding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.