Abstract

Purpose Optimal placement of static VAR compensator (SVC) devices not only improves the voltage profile (VP) but also reduces the active power loss (APL) and enhances the voltage stability (VS) through injecting appropriate VARs at optimal buses. The traditional mathematical methods may not provide global best solution and pose difficulties in handling multi-objective SVC placement (SVCP) problem with complex constraints and forcefully place all the given number of SVCs in the system without assessing their real requirements in enhancing the chosen performances. The purpose of this paper is to formulate the SVCP as a multi-objective optimization problem and solve it using a metaheuristic algorithm for global best solution. Design/methodology/approach The proposed SVCP method uses improved harmony search optimization (IHSO) with dissonance-avoiding mechanism for obtaining the global best solution through driving away the solution from the sub-optimal traps. In addition, the method uses a self-adaptive technique for optimally tuning the IHSO parameters and places only the required number of SVCs from the given number of SVCs. Findings This paper presents the results of the proposed method for 14, 30 and 57 bus systems and exhibits that the proposed method outperforms the existing SVCP methods in achieving the desired performances. Originality/value This paper proposes a new self-adaptive IHSO based SVCP method for optimally placing only the required number of SVCs with a goal of attaining the global best performances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call