Abstract

Thermokarst lakes have long been recognized as biogeochemical hotspots, especially as sources of greenhouse gases. On the Qinghai-Tibet Plateau, thermokarst lakes are experiencing extensive changes due to faster warming. For a deep understanding of internal lake biogeochemical processes, we applied metagenomic analyses to investigate the microbial diversity and their biogeochemical roles in sediment and water of thermokarst lakes in the Yellow River Source Area (YRSA). Sediment microbial communities (SMCs) had lower species and gene richness than water microbial communities (WMCs). Bacteria were the most abundant component in both SMCs and WMCs with significantly different abundant genera. The functional analyses showed that both SMCs and WMCs had low potential in methanogenesis but strong in aerobic respiration, nitrogen assimilation, exopolyphosphatase, glycerophosphodiester phosphodiesterases, and polyphosphate kinase. Moreover, SMCs were enriched in genes involved in anaerobic carbon fixation, aerobic carbon fixation, fermentation, most nitrogen metabolism pathways, dissimilatory sulfate reduction, sulfide oxidation, polysulfide reduction, 2-phosphonopropionate transporter, and phosphate regulation. WMCs were enriched in genes involved in assimilatory sulfate reduction, sulfur mineralization, phosphonoacetate hydrolase, and phosphonate transport. Functional potentials suggest the differences of greenhouse gas emission, nutrient cycling, and living strategies between SMCs and WMCs. This study provides insight into the main biogeochemical processes and their properties in thermokarst lakes in YRSA, improving our understanding of the roles and fates of these lakes in a warming world.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.