Abstract

The microbial community coalescence describes the mixing of microbial communities and the merging of their surrounding environments. Despite its prevalence in natural ecosystems and its potential influence on ecological processes, little research focused on the extent of coalescence between aquatic microbial communities. In this research, we analyzed the microbial communities in the Three Gorges Reservoir, a typical deep-water reservoir on the Yangtze River. The biogeography and the coalescence of microbial communities in water and sediment were illustrated and analyzed based on 16S rRNA gene amplicon sequence variants (ASVs). Differences in composition and diversity were identified between microbial communities in water and sediment, and microbial communities in sediment were more diverse than those in water. Between adjacent communities, by calculating the proportion of overlapped taxa, adopting the SourceTracker algorithm, and quantifying the connectivity of microbial cohesion, we found that the extent of intra-medium coalescence was strong (19.8%) and inter-media coalescence was faint (0.2%). 50 keystone species were selected using the cohesion metric. They displayed a stronger coalescence extent than average, and formed an accumulating pattern from upstream to downstream in the Three Gorges Reservoir, exhibiting their importance in the ecological network. Potential influencing factors of microbial community coalescence in aquatic environments were discussed, including environmental conditions, types of habitats, suspended particles in water, and microscale microbial activities. To summarize, this research depicted the coalescence of microbial communities in a deep-water reservoir and emphasized its ecological importance. We anticipate more attention and further research on the processes of microbial coalescence in the aquatic environment, which might provide new insights into turnover of microbial keystone species and changes in aquatic ecological conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call