Abstract

Enzymes functioning at alkaline pH are widely used in the detergent industry as additives to improve the stain removal properties of domestic and industrial cleaning products. This industry provides by far the major mass market for enzymes. With constantly changing formulations in detergents and concerns over energy demands, new and improved enzymes are constantly in demand. Soda lakes host dense populations of alkali‐loving microbes and, as such, provide vast reservoirs of potentially useful enzymes for such an industry. Traditional recovery methods for new enzymes have involved the isolation of microbes, preferably from a compatible chemical environment such as a soda lake, followed by screening of the isolates for useful enzymic activity. At least two commercially significant enzymes originating from soda lake microbes have been marketed following this route. However, the failure to cultivate more than a small percentage of microbes from most environments necessarily markedly reduces the recovery of new enzymes. In recent years, interest has focussed on more comprehensive recovery methods based around detecting appropriate enzyme genes in nucleic acids extracted from potentially useful sites, thus maximizing coverage of the whole genetic resource in a particular biotope. Here we review progress to date in soda lake biotopes and discuss ways the field may develop in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call