Abstract

Lake Turkana, in northwestern Kenya, is a closed-basin, alkaline ( pH = 9.2) lake of moderate salinity ( TDS = 2500 ppm). Principal ions are Na +, HCO − 3 and CI −. The lake is essentially polymictic in the northern basin and little compositional variation occurs in surface waters. The Omo River is the principal influent, providing some 80–90% of water input to the lake. Chloride has an apparent accumulation time of about 2500 years after accounting for burial of interstitial water. The bottom sediments are predominantly detrital and fine-grained, yet mineral-water reactions are very important for the geochcmical budget. Ca 2+ is precipitated as calcite; Na + is removed as an exchangeable cation on smectite; Mg 2+ is probably incorporated into a Mg-silicate phase, most likely poorlycrystalline smectite, as it enters the lake water; K + may be used in illite regradation. Cation exchange is a very important process in the mass balance of this lake. Over 40% of incoming Na is removed as an exchangeable cation. After cation exchange and interstitial water burial, Na has a response time of 2650 years, which compares favorably with that of chloride. These processes seem to occur rapidly within the water mass of the lake: other reactions may be important in regulating interstitial water compositions. Several changes occur in the upper 3m of sediment: interstitial-water pH drops to 8.3 and alkalinity increases slightly with depth, SO 2− 4 decreases slightly, and amorphous silica saturation is approached. These changes are a response to organic matter oxidation and the dissolution of unstable silicates rather than a reversal of reactions occurring in the lake water. High rates of sedimentation (up to 1 cm per year) may minimize the effects of diffusion between the interstitial waters and the lake water, although burial of interstitial water assumes considerable importance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.