Abstract

Background/purposeMetagenomic next-generation sequencing (mNGS) has been widely used for the detection of pathogens causing infectious diseases. This study aimed to evaluate the potential ability of mNGS to detect pathogens causing oral and maxillofacial space infection (OMSI) and compare the results with those of the traditional diagnostic microbial culture method. Materials and methodsWe retrospectively reviewed the data of 218 patients diagnosed with OMSI who underwent microbial culture and mNGS at the Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, from July 2020 to January 2022. ResultsThe positivity rate of mNGS (216 cases) was significantly higher than that of microbial culture (123 cases). The most frequently detected bacteria were different between these two detection methods. Streptococcus constellatus (16.05%, 35), Streptococcus anginosus (15.69%, 34) and Klebsiella pneumoniae (6.88%, 15) were the most commonly isolated bacteria by culture. However, Peptostreptococcus stomatis (61.47%, 134), Parvimonas micra (68.35%, 149) and Streptococcus constellatus (57.34%, 125) were the most commonly detected bacteria by mNGS. mNGS also has advantages in diagnosing viral infections. The optimal numbers of diagnostic reads were 1162 and 588 for the diagnosis of Streptococcus anginosus and Streptococcus constellatus infections, respectively. Read numbers were significantly correlated with C-reactive protein (CRP), procalcitonin (PCT), and blood glucose levels and neutrophil percentage (NEUT%). ConclusionFor pathogens causing OMSI, mNGS had a higher rate of microbial pathogen detection and remarkable advantages in identifying coinfections involving viruses and fungi. The read numbers for mNGS are important for diagnostic accuracy and disease severity evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call