Abstract

Published studies have shown that workers in animal slaughterhouses are at a higher risk of lung cancers as compared to the general population. No specific causal agents have been identified, and exposures to several chemicals have been examined and found to be unrelated. Evidence suggests a biological aetiology as the risk is highest for workers who are exposed to live animals or to biological material containing animal faeces, urine or blood. To investigate possible biological exposures in animal slaughterhouses, we used a metagenomic approach to characterise the profile of organisms present within an aerosol sample. An assessment of aerosol exposures for individual workers was achieved by the collection of personal samples that represent the inhalable fraction of dust/bioaerosol in workplace air in both cattle and sheep slaughterhouses. Two sets of nine personal aerosol samples were pooled for the cattle processing and sheep processing areas respectively, with a total of 332,677,346 sequence reads and 250,144,492 sequence reads of 85 bp in length produced for each. Eukaryotic genome sequence was found in both sampling locations, and bovine, ovine and human sequences were common. Sequences from WU polyomavirus and human papillomavirus 120 were detected in the metagenomic dataset from the cattle processing area, and these sequences were confirmed as being present in the original personal aerosol samples. This study presents the first metagenomic description of personal aerosol exposure and this methodology could be applied to a variety of environments. Also, the detection of two candidate viruses warrants further investigation in the setting of occupational exposures in animal slaughterhouses.

Highlights

  • Significant excess risks of lung cancer [1,2,3,4,5,6,7] and haematologic neoplasms [8,9,10] have been observed in slaughterhouse workers in both cohort and case-control studies conducted in several countries including New Zealand

  • To the best of our knowledge, we present the first description of a metagenome derived from personal aerosol samples that is designed to be representative of the inhalable dust/bioaerosol fraction of the air in the workplace environment, in animal slaughterhouses processing cattle and sheep

  • Workers in animal slaughterhouses have a high degree of exposure to animal body fluids and tissue, and ‘meatworkers’ in New Zealand are known to have exposure to a number of significant zoonotic diseases including leptospirosis [31,32,33], parapoxvirus

Read more

Summary

Introduction

Significant excess risks of lung cancer [1,2,3,4,5,6,7] and haematologic neoplasms [8,9,10] have been observed in slaughterhouse workers in both cohort and case-control studies conducted in several countries including New Zealand. With the aim of identifying potential causes of excess risk for work-related cancer in slaughterhouse workers we have conducted an investigation of a range of plausible biological exposures in meat processing plants, including the collection of personal inhalable dust/bioaerosol samples for analysis using high-throughput sequencing (HTS; known as deep sequencing, next-generation sequencing) to describe the metagenome in slaughterhouse air. A diverse number of sample types within the biosphere have already been explored using these techniques, such as profiling the organisms present in indoor urban air [13], those within the ocean [14], the determination of genomic variation in the human gut microbiome [15] or the discovery of previously unidentified pathogens [16]. Virus discovery using HTS relies upon de novo unbiased sequencing datasets, and the subsequent comparison to all known sequences contained within the public databases using comparative search algorithms such as BLAST [19]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.