Abstract
Metagenomics and metaproteomics analyses were used to determine the microbial diversity and taxon composition, as well as the biochemical potentials of the microbiome on the sandstone of Beishiku Temple located in Northwest China. Taxonomic annotation of the metagenomic dataset revealed the predominant taxa of the stone microbiome on this cave temple with characteristics of resistance to harsh environmental conditions. Meanwhile, there were also taxa in the microbiome that showed sensitivity to environmental factors. The taxa distribution and the metabolic functional distribution patterns by the metagenome and metaproteome, respectively, showed clear differences. The high abundance of energy metabolism represented in the metaproteome suggested that there were active geomicrobiological cycles of elements within the microbiome. The taxa responsible for reactions in the nitrogen cycle from both metagenome and metaproteome supported a metabolically active nitrogen cycle, and the high activity of Comammox bacteria indicated the strong metabolic activity of ammonia oxidation to nitrate in the outdoor site. The SOX-related taxa involved in the sulfur cycle showed higher activity outdoors than indoors, and on the outdoor ground than at the outdoor cliff, as detected through metaproteomic analysis. The development of petrochemical industry in the vicinity resulting in the deposition of sulfur/oxidized sulfur via atmosphere may stimulate the physiological activity of SOX. Our findings provide metagenomic and metaproteomic evidence for microbially driven geobiochemical cycles that result in the biodeterioration of stone monuments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have