Abstract

For comprehensive insights into the bacterial community and its functions during industrial wastewater treatment, with a particular emphasis on its pivotal role in the bioremediation of organic pollutants, this study utilized municipal samples as a control group for metagenomic analysis. This approach allowed us to investigate the distribution, function, and bacterial hosts of biodegradation genes (BDGs) and organic degradation genes (ODGs), as well as the dynamics of bacterial communities during the industrial wastewater bioprocess. The results revealed that BDGs and ODGs associated with the degradation of benzoates, biphenyls, triazines, nitrotoluenes, and chlorinated aromatics were notably more abundant in the industrial samples. Specially, genes like clcD, linC, catE, pcaD, hbaB, hcrC, and badK, involved in the peripheral pathways for the catabolism of aromatic compounds, benzoate transport, and central aromatic intermediates, showed a significantly higher abundance of industrial activated sludge (AS) than municipal AS. Additionally, the BDG/ODG co-occurrence contigs in industrial samples exhibited a higher diversity in terms of degradation gene carrying capacity. Functional analysis of Clusters of Orthologous Groups (COGs) indicated that the primary function of bacterial communities in industrial AS was associated with the category of “metabolism”. Furthermore, the presence of organic pollutants in industrial wastewater induced alterations in the bacterial community, particularly impacting the abundance of key hosts harboring BDGs and ODGs (e.g. Bradyrhizobium, Hydrogenophaga, and Mesorhizobium). The specific hosts of BDG/ODG could explain the distribution characteristics of degradation genes. For example, the prevalence of the Adh1 gene, primarily associated with Mesorhizobium, was notably more prevalent in the industrial AS. Overall, this study provides valuable insights into the development of more effective strategies for the industrial wastewater treatment and the mitigation of organic pollutant contamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call