Abstract
Current multi-physics Finite Element Method (FEM) solvers are complex systems in terms of both their mathematical complexity and lines of code. This paper proposes a skeleton generic FEM solver, named MetaFEM, in total about 6,000 lines of Julia code, which translates generic input Partial Differential Equation (PDE) weak forms into corresponding GPU-accelerated simulations with a grammar similar to FEniCS or FreeFEM. Two novel approaches differentiate MetaFEM from the common solvers: (1) the FEM kernel is based on an original theory/algorithm which explicitly processes meta-expressions, as the name suggests, and (2) the symbolic engine is a rule-based Computer Algebra System (CAS), i.e., the equations are rewritten/derived according to a set of rewriting rules instead of going through completely fixed routines, supporting easy customization by developers. Example cases in thermal conduction, linear elasticity and incompressible flow are presented to demonstrate utility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.