Abstract
AbstractThis paper reports on the development of a metadata application profile (AP), MetaFAIR, designed to support research data management (RDM) to make research data findable, accessible, interoperable, and reusable. The development of MetaFAIR followed a three‐step process that included learning about the characteristics of datasets from researchers to establish their context and requirements, as well as iterative design and testing with researchers' feedback. Guided by the FAIR principles (Findability, Accessibility, Interoperability, and Reusability), MetaFAIR focuses on accommodating description needs particular to computational social science datasets while seeking to provide general enough elements to describe data collections across many different domains. In this paper, MetaFAIR is placed in the context of historical and recent developments in the areas of RDM and application profile creation; following this contextualization, the paper describes the central considerations and challenges of the MetaFAIR development process and discusses its significance for future work in RDM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Association for Information Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.