Abstract

Nitrogen (N) is a key factor for plant growth and affects anthocyanin synthesis. This study aimed to clarify the potential mechanisms of N levels (LN, 0 kg·ha-1; MN, 150 kg·ha-1; HN, 225 kg·ha-1) in anthocyanin synthesis and grain quality of colored grain wheat. HN increased the yield component traits and grain morphology traits in colored grain wheat while decreasing the processing and nutrient quality traits. Most quality traits were significantly negatively correlated with the yield composition and morphological traits. Anthocyanin was more accumulated under LN conditions, but other related yield and morphological traits of colored grain wheat declined. The anthocyanin content was the highest in blue wheat, followed by that in purple wheat. Cyanidin-3-O-(6-O-malonyl-β-d-glucoside) and cyanidin-3-O-rutinoside were the predominant anthocyanins in blue and purple wheat. The identified anthocyanin-related metabolites were associated with flavonoid biosynthesis, anthocyanin biosynthesis, and secondary metabolite biosynthesis. Therefore, the study provided information for optimizing nitrogen fertilizer management in producing high quality colored wheat and verified the close relationship between anthocyanin and low N condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.