Abstract

Dental caries is initiated by demineralization of the tooth surface through acid production by sugar metabolism of supragingival plaque microflora. To elucidate the sugar metabolic system, we used CE-MS to perform metabolomics of the central carbon metabolism, the EMP pathway, the pentose-phosphate pathway, and the TCA cycle in supra- gingival plaque and representative oral bacteria, Streptococcus and Actinomyces. Supragingival plaque contained all the targeted metabolites in the central carbon metabolism, except erythrose 4-phosphate in the pentose-phosphate pathway. After glucose rinse, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, dihydroxyacetone phosphate, and pyruvate in the EMP pathway and 6-phosphogluconate, ribulose 5-phosphate, and sedoheptulose 7-phosphate in the pentose-phosphate pathway, and acetyl CoA were increased. Meanwhile, 3-phosphoglycerate and phosphoenolpyruvate in the EMP pathway and succinate, fumarate, and malate in the TCA cycle were decreased. These pathways and changes in metabolites observed in supragingival plaque were similar to the integration of metabolite profiles in Streptococcus and Actinomyces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.