Abstract
Metabolomics, a recent addition to omics sciences, studies small molecules across plants, animals, humans, and marine organisms. Nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC–MS) are widely used in those studies, including microalgae metabolomics. NMR is non-destructive and highly reproducible but has limited sensitivity, which could be supplemented by joining GC–MS analysis. Extracting metabolites from macromolecules requires optimization for trustworthy results. Different extraction methods yield distinct profiles, emphasizing the need for optimization. The results indicated that the optimized extraction procedure successfully identified NMR and GC–MS-based metabolites in MeOH, CHCl3, and H2O extraction solvents. The findings represented the spectral information related to carbohydrates, organic molecules, and amino acids from the water-soluble metabolites fraction and a series of fatty acid chains, lipids, and sterols from the lipid fraction. Our study underscores the benefit of combining NMR and GC–MS techniques to comprehensively understand microalgae metabolomes, including high and low metabolite concentrations and abundances.•In this study, we focused on optimizing the extraction procedure and combining NMR and GC–MS techniques to overcome the low NMR sensitivity and the different detected range limits of NMR and GC–MS.•We explored metabolome diversity in a tropical strain of the small cells’ diatom Cheatoceros tenuissimus.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have