Abstract

The endangered beluga (Delphinapterus leucas) population residing in the St. Lawrence Estuary (SLE; Eastern Canada) is declining. The elevated tissue concentrations of a wide range of organohalogen contaminants might play a role in the non-recovery of this whale population. Organohalogens have been reported to impair the regulation of several metabolic products from cellular reactions in mammals such as amino acids and fatty acids. The objective of this study was to investigate a suite of organohalogens including polychlorinated biphenyls, organochlorine pesticides, short-chain chlorinated paraffins (SCCPs), polybrominated diphenyl ethers, and selected emerging flame retardants in blubber (biopsy) collected from 40 SLE male belugas, and their relationships to skin concentrations of targeted metabolites (i.e., 21 amino acids, 22 biogenic amines, 18 fatty acids, and 17 energy metabolites). A cluster analysis based on metabolomic profiles distinguished two main subgroups of belugas in the upper and lower sector of their summer habitat in the SLE. These results indicate that ecological factors such as local prey availability and diet composition played a role in shaping the metabolite profiles of belugas. Moreover, SCCP concentrations in SLE male belugas correlated negatively with those of four unsaturated fatty acids (C16:1ω7, C22:5ω3c1, C22:5ω3c2, and C22:6ω3), and positively with those of acetylornithine (biogenic amine). These findings suggest that biological functions such as lipid metabolism represent potential targets for organohalogens in this population, and further our understanding on potential health risks associated with elevated organohalogen exposure in cetaceans. Our results also underscore the necessity of considering ecological factors (e.g., diet and habitat use) in metabolomic studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call