Abstract

Both building materials and consumer products have been identified as possible sources for potentially hazardous substances like phthalates, polychlorinated biphenyls (PCBs), organophosphorous flame retardants (OPFRs), polybrominated diphenyl ethers (PBDEs) and short chain chlorinated paraffins (SCCPs) in indoor air. Thus, indoor air has been suggested to contribute significantly to human exposure to these chemicals. There is lack of data on the occurrence of several of the aforementioned chemicals in indoor air. Therefore, indoor air (gas and particulate phase) was collected from 48 households and 6 classrooms in two counties in Norway. In both the households and schools, median levels of low molecular weight phthalates (785 ng/m3), OPFRs (55 ng/m3) and SCCPs (128 ng/m3) were up to 1000 times higher than the levels of PCBs (829 pg/m3) and PBDEs (167 pg/m3). Median concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), di-isobutyl phthalate (DiBP) and SCCPs were 3–6 times higher in households compared to schools. The levels of OPFRs, PCBs and PBDEs were similar in households and schools. In univariate analysis, the indoor concentrations of different environmental chemicals were significantly affected by location of households (OPFRs), airing of living room (some PCBs and PBDEs), presence of upholstered chair/couch (OPFRs), pet animal hold (some PBDEs) and presence of electrical heaters (selected PCBs and PBDEs). Significant correlations were also detected for the total size of households with OPFRs, frequency of vacuuming the living room with selected PCBs and PBDEs, frequency of washing the living room with selected PCBs and the total number of TVs in the households with selected phthalates and SCCPs. Finally, intake estimates indicated that indoor air contributed more or equally to low molecular weight phthalates and SCCPs exposure compared to food consumption, whereas the contribution from indoor air was smaller than the dietary intake for the other groups of chemicals.

Highlights

  • Most individuals in western countries spend the majority of their time in indoor environments (Klepeis et al, 2001)

  • Phthalates, polychlorinated biphenyls (PCBs), organophosphorous flame retardants (OPFRs), polybrominated diphenyl ethers (PBDEs) and short chain chlorinated paraffins (SCCPs) are among chemicals that have been widespread used in building materials and consumer products and have gained interest in the recent years due to both their widespread presence in indoor environments and their suggested potential for adverse health effects

  • The levels of PCBs and PBDEs decreased with the increasing number of halogen atoms in the molecules resulting in decreasing volatility (Fig. 1)

Read more

Summary

Introduction

Most individuals in western countries spend the majority of their time in indoor environments (offices, stores, homes, etc.) (Klepeis et al, 2001). Phthalates, polychlorinated biphenyls (PCBs), organophosphorous flame retardants (OPFRs), polybrominated diphenyl ethers (PBDEs) and short chain chlorinated paraffins (SCCPs) are among chemicals that have been widespread used in building materials and consumer products and have gained interest in the recent years due to both their widespread presence in indoor environments and their suggested potential for adverse health effects. Depending upon their molar mass, boiling point, saturation vapor pressure and octanol/air partitioning coefficient, these chemicals may be distributed between gas phase and particulate phase in indoor air as well as settled dust (Takeuchi et al, 2014; Wei et al, 2019; Weschler et al, 2008).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call