Abstract

Preeclampsia is one of the leading causes of maternal and neonatal mortality and morbidity worldwide. We have previously reported that magnesium sulfate therapy is effective for early-onset (EO) preeclampsia. To investigate the molecular mechanisms underlying this favorable effect, metabolomics analysis of magnesium sulfate-treated preeclamptic placentas was performed using capillary electrophoresis time of flight mass spectrometry. There were significant metabolic differences between EO-preeclamptic placentas (n=7) and other placentas (late-onset preeclampsia [n=3], normal pregnancies [n=10]). In EO-preeclamptic placentas, the glutathione metabolism pathway was markedly upregulated, whereas single-sample gene-set enrichment analysis using a publicly available microarray dataset (GSE75010) showed that the glutathione metabolism pathway was significantly downregulated in EO-preeclamptic placentas compared with nonpreeclamptic controls. Metabolomic profiles showed that magnesium sulfate significantly promoted glutathione production in an immortalized trophoblast cell line under oxidative stress conditions but not under normal conditions. Magnesium sulfate suppressed hydrogen peroxide-induced production of reactive oxygen species. Exploratory analysis revealed that urinary 8-isoprostane was decreased in all 5 women treated with magnesium sulfate for preeclampsia with severe features. These findings suggest that magnesium sulfate is effective for treating EO-preeclampsia partly because of its antioxidant effects on trophoblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.