Abstract
Ethnopharmacological relevanceSaussurea costus (Falc.) Lipschitz. is one of the most reputed medicinal plants as a traditional medicine in the Arab and Middle East regions in the treatment of thyroid disorders, however, more investigations are needed to fully understand its effectiveness and mechanism of action. Aim of the studyThe primary objective of the study was to assess the impact of Saussurea costus (COST) on the metabolic profiles of propylthiouracil (PTU)-induced hypothyroidism in rats. This involves a comprehensive examination of serum metabolites using UPLC/QqQ-MS analysis aiming to identify differential metabolites, elucidate underlying mechanisms, and evaluate the potential pharmacological effect of COST in restoring metabolic homeostasis. Materials and methodsHypothyroidism was induced in female Sprague-Dawley rats by oral administration of propylthiouracil (PTU). UPLC/QqQ MS analysis of serum samples from normal, PTU, and PTU + COST rats was utilized for annotation of intrinsic metabolites with the aid of online Human metabolome database (HMDB) and extensive literature surfing. Multivariate statistical analyses, including orthogonal partial least squares discriminant analysis (OPLS-DA), discerned variations between the different groups. Serum levels of T3, T4 and TSH in addition to arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) levels in thyroid gland tissues; Phospholipase A2 group IIA (PLA2G2A), and lipoprotein lipase (LPL) in liver tissues were assessed by specific ELISA kits. Gene expression for key proteins of the primary evolved pathwayswere quantified by one-step qRT-PCR technique. Histopathological evaluation of thyroid gland tissue was performed by an investigator blinded to the experimental group using light microscope. ResultsDistinct clustering in multivariate statistical analysis models indicated significant variations in serum chemical profiles among normal, disease, and treated groups. VIP values guided the selection of differential metabolites, revealing significant changes in metabolite concentrations. Subsequent to COST treatment, 43 differential intrinsic metabolites exhibited a notable tendency to revert towards normal levels. Annotated metabolites, such as lysophosphatidylcholine (LPC), L-acetylcarnitine, gamma-glutamylserine, and others, showed differential regulation in response to PTU and subsequent S. costus treatment. Notably, 21 metabolites were associated with polyunsaturated fatty acids (PUFAs) biosynthesis, arachidonic acid (ARA) metabolism, and glycerophospholipid metabolism exhibited significant changes on conducting metabolic pathway analysis. ConclusionsCOST improves PTU-induced hypothyroidism by regulating biosynthesis of PUFAs signified by n-3/n-6, ARA and glycerophospholipid metabolism. The study provides us a novel mechanism to explain the improvement of hypothyroidism and associated dyslipidemia by COST, depicts a metabolic profile of hypothyroidism, and gives us another point cut for further exploring the biomarkers and pathogenesis of hypothyroidism.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have