Abstract

Rhizobium meliloti (ATCC 55340) was grown at different specific growth rates in a chemostat apparatus. Metabolic products, relating to the Embden-Meyerhof-Parnas (EMP) pathway and the tricarboxylic acid (TCA) cycle, were measured and quantified to probe the influence of specific growth rate on the distribution of important metabolites. The detection of propionate in the fermentation broth implies that the imbalance of reducing equivalents of FADH(2) and NADH + H(+) resulted in a partially reductive operation of the TCA cycle. Additionally, experimental results show that the specific growth rate plays an essential role in modulating the biomass concentration, the specific substrate uptake rate, the cell length, the specific exopolysaccharide (EPS) production rate, the distribution of EPS molecular weight, and the profiles of carbohydrate and organic acid. The specific EPS production rate (varying from 13.3 to 111 mg EPS/g-DW/h) follows a growth-associated pattern at the specific growth rate ranging from 0.06 to 0.20 h(-1) and switches into non-growth-associated mode when the specific growth rate is over 0.20 h(-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.