Abstract

Cell-free extracts from 10 strains of Spiroplasma species were examined for 67 enzyme activities of the Embden-Meyerhof-Parnas pathway, pentose phosphate shunt, tricarboxylic acid cycle, and purine and pyrimidine pathways. The spiroplasmas were fermentative, possessing enzyme activities that converted glucose 6-phosphate to pyruvate and lactate by the Embden-Meyerhof-Parnas pathway. Substrate phosphorylation was found in all strains. A modified pentose phosphate shunt was present, which was characterized by a lack of detectable glucose 6-phosphate and 6-phosphogluconate dehydrogenase activities. Spiroplasmas could synthesize purine mononucleotides by using pyrophosphate (PPi) as the orthophosphate donor. All spiroplasmas except Spiroplasma floricola used adenosine triphosphate (ATP) to phosphorylate deoxyguanosine; no other nucleoside could be phosphorylated with ATP by any spiroplasma tested. These results contrast with those reported for other mollicutes, in which PPi serves as the orthophosphate donor in the nucleoside kinase reaction. The participation of ATP rather than PPi in this reaction is unknown in other mollicutes regardless of the nucleoside reactant. Deoxypyrimidine enzyme activities were similar but varied in the reactions involving deamination of deoxycytidine triphosphate and deoxycytidine. All Spiroplasma spp. strains had deoxyuridine triphosphatase activity. Uridine phosphorylase activity varied among strains and is possibly group dependent. As in all other mollicutes, a tricarboxylic acid cycle is apparently absent in Spiroplasma spp. Reduced nicotinamide adenine dinucleotide oxidase activity was localized in the cytoplasmic fraction of all Spiroplasma species tested. Our assays indicate that the members of the Spiroplasmataceae are essentially metabolically homogeneous in the highly conserved pathways which we studied, but differ from other mollicutes in several important respects. These differences are of probable phylogenetic significance and may provide tools for recognition of higher taxonomic levels of mollicutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.