Abstract

Application experiments have suggested that short‐day‐induced cessation of elongation growth in trees is caused by photoperiodic regulation of the conversion of gibberellin GA19 to GA20. In the present study we examined further the photoperiodic control of GA metabolism in trees with focus on the conversion of GA19 in Salix pentandra, hybrid aspen (Populus tremula × tremuloides) and silver birch (Betula pendula) using [17,17‐2H2]‐GA19 or unlabelled GAs in application studies. GA20 and GA1 were able to restore growth also in hybrid aspen and silver birch under short days (SD), whereas GA19 had no or only a very small activity. Contrary to hybrid aspen and S. pentandra, the activity of GA20 in silver birch was significantly lower than that of GA1. Gas chromatography‐mass spectrometry (GC‐MS) analysis revealed a smaller turnover of [2H2]‐GA19 in SD than in long days (LD) in hybrid aspen. No such difference in turnover of [2H2]‐GA19 was observed in photoperiod‐insensitive hybrid aspen overexpressing PHYA. Application of unlabelled GAs to seedlings of S. pentandra, hybrid aspen and silver birch under SD followed by quantification of metabolites by GC‐MS analysis, showed that applied GA19 was not readily converted to GA20 and GA1. Although the sensitivity to GAs is also known to decrease under SD, the present data are in favour of a photoperiodic regulation of the metabolism of GA19in vivo in the woody species S. pentandra, hybrid aspen and silver birch. The data might also suggest that silver birch differs from S. pentandra and hybrid aspen by exhibiting a possible photoperiodic control also of the conversion of GA20 to GA1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call