Abstract

Cell-free extracts capable of converting [(14)C]-labeled gibberellins (GAs) were prepared from spinach (Spinacia oleracea L.) leaves. [(14)C]-labeled GAs, prepared enzymically from [(14)C]mevalonic acid, were incubated with these extracts, and products were identified by gas chromatography-mass spectrometry. The following pathway was found to operate in extracts from spinach leaves grown under long day (LD) conditions: GA(12) --> GA(53) --> GA(44) --> GA(19) --> GA(20). The pH optima for the enzymic conversions of [(14)C]GA(53), [(14)C]GA(44) and [(14)C]GA(19) were approximately 7.0, 8.0, and 6.5, respectively. These three enzyme activities required Fe(2+), alpha-ketoglutarate and O(2) for activity, and ascorbate stimulated the conversion of [(14)C]GA(53) and [(14)C]GA(19). Extracts from plants given LD or short days (SD) were examined, and enzymic activities were measured as a function of exposure to LD, as well as to darkness following 8 LD. The results indicate that the activities of the enzymes oxidizing GA(53) and GA(19) are increased in LD and decreased in SD or darkness, but that the enzyme activity oxidizing GA(44) remains high irrespective of light or dark treatment. This photoperiodic control of enzyme activity is not due to the presence of an inhibitor in plants grown in SD. These observations offer an explanation for the higher GA(20) content of spinach plants in LD than in SD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call