Abstract

Dictamnine, a furoquinoline alkaloid isolated from the root bark of Dictamnus dasycarpus Turcz. (Rutaceae), is reported to have a wide range of pharmacological activities. In this study, the in vitro metabolic profiles of dictamnine in mouse, rat, dog, monkey, and human liver microsomes were investigated and compared. Dictamnine was incubated with liver microsomes in the presence of an NADPH-regenerating system, resulting in the formation of eight metabolites (M1–M8). M1 is an O-desmethyl metabolite. M5 and M6 are formed by a mono-hydroxylation of the benzene ring of dictamnine. M8 was tentatively identified as an N-oxide metabolite. The predominant metabolic pathway of dictamnine occurs through the epoxidation of the 2,3-olefinic to yield a 2,3-epoxide metabolite (M7), followed by the ring of the epoxide opening to give M4. Likewise, cleavage of the furan ring forms M2 and M3. Slight differences were observed in the in vitro metabolic profiles of dictamnine among the five species tested. A chemical inhibition study with a broad and five specific CYP450 inhibitors revealed that most of the dictamnine metabolites in liver microsomes are mediated by CYP450, with CYP3A4 as the predominant enzyme involved in the formation of M7, the major metabolite. These findings provide vital information to better understand the metabolic processes of dictamnine among various species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.