Abstract

The metabolism of 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG), one of the most promising new anti-herpes virus compounds, in HeLa cells infected with herpes simplex virus type 1 was compared with that in the uninfected HeLa cells. In the virus-infected cells, the uptake of DHPG was enhanced and the major metabolites were found to be the mono-, di-, and triphosphate derivatives. The formation of these metabolites was dependent on the extracellular concentration of DHPG (0.5 to 5.0 microM). Virus-induced thymidine kinase was capable of phosphorylating DHPG to its monophosphate which could be further phosphorylated to the di- and triphosphate derivatives by the host cellular enzymes. Incorporation of the DHPG into DNA was observed in virus-infected cells. In contrast with 9-(2-hydroxyethoxymethyl)guanine, DHPG seemed not to serve as a chain terminator, but to be incorporated internally into DNA strands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.