Abstract
Metabolic pathways exhibit fluctuating activities during bone and dental loss and defects, suggesting a regulated metabolic plasticity. Skeletal remodeling is an energy-demanding process related to altered metabolic activities. These metabolic changes are frequently associated with epigenetic modifications, including variations in the expression or activity of enzymes modified through epigenetic mechanisms, which directly or indirectly impact cellular metabolism. Metabolic reprogramming driven by bone and dental conditions alters the epigenetic landscape by modulating the activities of DNA and histone modification enzymes at the metabolite level. Epigenetic mechanisms modulate the expression of metabolic genes, consequently influencing the metabolome. The interplay between epigenetics and metabolomics is crucial in maintaining bone and dental homeostasis by preserving cell proliferation and pluripotency. This review, therefore, aimed to examine the effects of metabolic reprogramming in bone and dental-related cells on the regulation of epigenetic modifications, particularly acetylation, methylation, and lactylation. We also discuss the effects of chromatin-modifying enzymes on metabolism and the potential therapeutic benefits of dietary compounds as epigenetic modulators. In this review, we highlight the inconsistencies in current research findings and suggest potential approaches to translate fundamental insights into clinical treatments for bone and tooth diseases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have