Abstract
The evolved resistance of Bromus japonicus Houtt. to ALS-inhibiting herbicides is well established. Previous studies have primarily focused on target-site resistance; however, non-target-site resistance has not been well characterized. This investigation demonstrated that ALS gene sequencing did not detect any previously known resistance mutations in a mesosulfuron-methyl-resistant (MR) population, and notably, treatment with the P450 monooxygenase (P450) inhibitor malathion markedly heightened susceptibility to mesosulfuron-methyl. Utilizing UPLC-MS/MS analysis confirmed elevated mesosulfuron-methyl metabolism in MR plants. The integration of Isoform Sequencing (Iso-Seq) and RNA Sequencing (RNA-Seq) facilitated the identification of candidate genes associated with non-target sites in a subpopulation with two generations of herbicide selection. Through qRT-PCR analysis, 21 differentially expressed genes were characterized, and among these, 10 genes (comprising three P450s, two glutathione S-transferases, one glycosyltransferase, two ATP-binding cassette transporters, one oxidase, and one hydrolase) exhibited constitutive upregulation in resistant plants. Our findings substantiated that increased herbicide metabolism is a driving force behind mesosulfuron-methyl resistance in this B. japonicus population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.