Abstract
AbstractFor species that partition resources, the classic expectation is that increasing resource diversity allows for increased species diversity. On the other hand, for neutral species, such as those competing equally for a single resource, diversity reflects a balance between the rate of introduction of novelty (e.g., by immigration or speciation) and the rate of extinction. Recent models of microbial metabolism have identified scenarios where metabolic trade-offs among species partitioning multiple resources can produce emergent neutral-like dynamics. In this hybrid scenario, one might expect that both resource diversity and immigration will act to boost species diversity. We show, however, that the reverse may be true: when metabolic trade-offs hold and population sizes are sufficiently large, increasing resource diversity can act to reduce species diversity, sometimes drastically. This reversal is explained by a generic transition between neutral- and niche-like dynamics, driven by the diversity of resources. The inverted resource-diversity relationship that results may be a signature of consumer-resource systems with strong metabolic trade-offs.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have